大型神经语言模型(NLMS)的域适应性在预审进阶段与大量非结构化数据结合在一起。但是,在这项研究中,我们表明,经过验证的NLMS从紧凑的数据子集中更有效,更快地学习内域信息,该数据集中在域中的关键信息上。我们使用抽象摘要和提取关键字的组合从非结构化数据构建这些紧凑的子集。特别是,我们依靠Bart生成抽象性摘要,而Keybert从这些摘要中提取关键字(或直接的原始非结构化文本)。我们使用六个不同的设置评估我们的方法:三个数据集与两个不同的NLMS结合使用。我们的结果表明,使用我们的方法在NLM上训练的特定任务分类器,使用我们的方法优于基于传统预处理的方法,即在整个数据上随机掩盖,以及无需审计的方法。此外,我们表明我们的策略将预处理的时间降低了五倍,而这是香草预处理的五倍。我们所有实验的代码均在https://github.com/shahriargolchin/compact-pretraining上公开获得。
translated by 谷歌翻译
我们提出了一种可解释的关系提取方法,通过共同训练这两个目标来减轻概括和解释性之间的张力。我们的方法使用多任务学习体系结构,该体系结构共同训练分类器以进行关系提取,并在解释关系分类器的决策的关系中标记单词的序列模型。我们还将模型输出转换为规则,以将全局解释带入这种方法。使用混合策略对此序列模型进行训练:有监督,当可获得预先存在的模式的监督时,另外还要半监督。在后一种情况下,我们将序列模型的标签视为潜在变量,并学习最大化关系分类器性能的最佳分配。我们评估了两个数据集中的提议方法,并表明序列模型提供了标签,可作为关系分类器决策的准确解释,并且重要的是,联合培训通常可以改善关系分类器的性能。我们还评估了生成的规则的性能,并表明新规则是手动规则的重要附加功能,并使基于规则的系统更接近神经模型。
translated by 谷歌翻译
本文介绍了正式和非正式波斯之间的语音,形态和句法区别,表明这两个变体具有根本差异,不能仅归因于发音差异。鉴于非正式波斯展出特殊的特征,任何在正式波斯语上培训的计算模型都不太可能转移到非正式的波斯,所以需要为这种品种创建专用的树木银行。因此,我们详细介绍了开源非正式波斯普通依赖性TreeBank的开发,这是一个在通用依赖性方案中注释的新的TreeBank。然后,我们通过在现有的正式树木银行上培训两个依赖性解析器并在域名数据上进行评估,调查非正式波斯的解析,即我们非正式树木银行的开发集。我们的结果表明,当我们穿过两个域时,解析器在跨越两个域时遇到了实质性的性能下降,因为它们面临更为不知名的令牌和结构,并且无法概括。此外,性能恶化的依赖关系最多代表了非正式变体的独特属性。这项研究的最终目标表明更广泛的影响是提供踩踏石头,以揭示语言的非正式变种的重要性,这被广泛地忽略了跨语言的自然语言处理工具。
translated by 谷歌翻译
我们介绍了一系列深度学习架构,用于际际关系提取,即参与者不一定在同一句中的关系。我们将这些架构应用于生物医学领域的重要用例:将生物背景分配给生化事件。在这项工作中,生物学背景被定义为观察到生物化学事件的生物系统的类型。神经架构编码并聚合相同候选上下文提到的多个出现,以确定特定事件是否提及的正确上下文。我们提出了两种广泛类型的架构:第一个类型聚合在发射分类之前关于事件的相同候选上下文的多个实例;第二种类型独立分类每个实例并使用结果投票给最终类,类似于集合方法。我们的实验表明,拟议的神经分类器具有竞争力,一些比以前的艺术传统机器学习方法的表现更好,而无需特征工程。我们的分析表明,与传统的机器学习分类器相比,神经方法特别提高精度,并且还表明了句子间关系的难度如何随着事件与上下文提升的距离而增加。
translated by 谷歌翻译
Models of sensory processing and learning in the cortex need to efficiently assign credit to synapses in all areas. In deep learning, a known solution is error backpropagation, which however requires biologically implausible weight transport from feed-forward to feedback paths. We introduce Phaseless Alignment Learning (PAL), a bio-plausible method to learn efficient feedback weights in layered cortical hierarchies. This is achieved by exploiting the noise naturally found in biophysical systems as an additional carrier of information. In our dynamical system, all weights are learned simultaneously with always-on plasticity and using only information locally available to the synapses. Our method is completely phase-free (no forward and backward passes or phased learning) and allows for efficient error propagation across multi-layer cortical hierarchies, while maintaining biologically plausible signal transport and learning. Our method is applicable to a wide class of models and improves on previously known biologically plausible ways of credit assignment: compared to random synaptic feedback, it can solve complex tasks with less neurons and learn more useful latent representations. We demonstrate this on various classification tasks using a cortical microcircuit model with prospective coding.
translated by 谷歌翻译
Autonomous driving is an exciting new industry, posing important research questions. Within the perception module, 3D human pose estimation is an emerging technology, which can enable the autonomous vehicle to perceive and understand the subtle and complex behaviors of pedestrians. While hardware systems and sensors have dramatically improved over the decades -- with cars potentially boasting complex LiDAR and vision systems and with a growing expansion of the available body of dedicated datasets for this newly available information -- not much work has been done to harness these novel signals for the core problem of 3D human pose estimation. Our method, which we coin HUM3DIL (HUMan 3D from Images and LiDAR), efficiently makes use of these complementary signals, in a semi-supervised fashion and outperforms existing methods with a large margin. It is a fast and compact model for onboard deployment. Specifically, we embed LiDAR points into pixel-aligned multi-modal features, which we pass through a sequence of Transformer refinement stages. Quantitative experiments on the Waymo Open Dataset support these claims, where we achieve state-of-the-art results on the task of 3D pose estimation.
translated by 谷歌翻译
We present PhoMoH, a neural network methodology to construct generative models of photorealistic 3D geometry and appearance of human heads including hair, beards, clothing and accessories. In contrast to prior work, PhoMoH models the human head using neural fields, thus supporting complex topology. Instead of learning a head model from scratch, we propose to augment an existing expressive head model with new features. Concretely, we learn a highly detailed geometry network layered on top of a mid-resolution head model together with a detailed, local geometry-aware, and disentangled color field. Our proposed architecture allows us to learn photorealistic human head models from relatively little data. The learned generative geometry and appearance networks can be sampled individually and allow the creation of diverse and realistic human heads. Extensive experiments validate our method qualitatively and across different metrics.
translated by 谷歌翻译
We introduce Structured 3D Features, a model based on a novel implicit 3D representation that pools pixel-aligned image features onto dense 3D points sampled from a parametric, statistical human mesh surface. The 3D points have associated semantics and can move freely in 3D space. This allows for optimal coverage of the person of interest, beyond just the body shape, which in turn, additionally helps modeling accessories, hair, and loose clothing. Owing to this, we present a complete 3D transformer-based attention framework which, given a single image of a person in an unconstrained pose, generates an animatable 3D reconstruction with albedo and illumination decomposition, as a result of a single end-to-end model, trained semi-supervised, and with no additional postprocessing. We show that our S3F model surpasses the previous state-of-the-art on various tasks, including monocular 3D reconstruction, as well as albedo and shading estimation. Moreover, we show that the proposed methodology allows novel view synthesis, relighting, and re-posing the reconstruction, and can naturally be extended to handle multiple input images (e.g. different views of a person, or the same view, in different poses, in video). Finally, we demonstrate the editing capabilities of our model for 3D virtual try-on applications.
translated by 谷歌翻译
This paper describes the 5th edition of the Predicting Video Memorability Task as part of MediaEval2022. This year we have reorganised and simplified the task in order to lubricate a greater depth of inquiry. Similar to last year, two datasets are provided in order to facilitate generalisation, however, this year we have replaced the TRECVid2019 Video-to-Text dataset with the VideoMem dataset in order to remedy underlying data quality issues, and to prioritise short-term memorability prediction by elevating the Memento10k dataset as the primary dataset. Additionally, a fully fledged electroencephalography (EEG)-based prediction sub-task is introduced. In this paper, we outline the core facets of the task and its constituent sub-tasks; describing the datasets, evaluation metrics, and requirements for participant submissions.
translated by 谷歌翻译
The Predicting Media Memorability task in the MediaEval evaluation campaign has been running annually since 2018 and several different tasks and data sets have been used in this time. This has allowed us to compare the performance of many memorability prediction techniques on the same data and in a reproducible way and to refine and improve on those techniques. The resources created to compute media memorability are now being used by researchers well beyond the actual evaluation campaign. In this paper we present a summary of the task, including the collective lessons we have learned for the research community.
translated by 谷歌翻译